适用于油田产出水的核?壳形聚合物及其制备方法

文档序号:10713939阅读:710来源:国知局
适用于油田产出水的核?壳形聚合物及其制备方法
【专利摘要】本发明公开了适用于油田产出水的核?壳形聚合物及其制备方法,该聚合物以功能化的聚酰胺?胺杂化超细化二氧化硅为核,以丙烯酰胺、丙烯酸为亲水单体,以甲基?N,N?二己(辛)基丙烯酰胺为疏水单体,由氧化还原体系引发聚合反应,制备成水凝胶,经过烘干、粉碎和筛分而成。制备功能化的聚酰胺?胺杂化超细化二氧化硅包括:偶联剂对超细化二氧化硅的表面改性、聚酰胺?胺杂化超细化二氧化硅、聚酰胺?胺杂化超细化二氧化硅的功能化改性。该聚合物呈支化结构,在油田产出水中溶解后亲水链上的超分子效应形成可逆的网络结构保证聚合物的增黏性,提高了聚合物的抗剪切性和长期稳定性,从而实现产出水配注聚合物驱油的目的。
【专利说明】
适用于油田产出水的核-壳形聚合物及其制备方法
技术领域
[0001] 本发明涉及油气田开发过程中适用于油田产出水的核-壳形聚合物及其制备方 法,属于水溶性高分子合成及油田化学领域。
【背景技术】
[0002] 注水开发中、后期的油藏,受油水流度的不利影响,聚合物沿着高渗透层指进,绕 流通过高含油区域,大量的原油未波及,水驱采出程度低。据统计,我国陆上油田经过弹性 能量采油和水驱采油,原油的采出程度不足40% (何江川等,油田开发战略与接替技术[J], 石油学报,2012,33(3): 519-525)。作为一项重要的三次采油技术,聚合物驱主要通过三方 面的机理提高水驱开发效果:控制水相流度,改善水油流度比,提高层内波及效率;降低高 渗透率的水淹层段流体总流度,缩小高、低渗透率层段间水线推进速度差,调整吸水剖面, 提高层间波及系数;黏弹性聚合物大分子产生的拉拽作用,提高波及区微观驱油效率。
[0003] 当前,油田用聚合物驱主要是部分水解聚丙烯酰胺(ΗΡΑΜ) APAM在淡水或低矿化 度的注入水中溶解性好,溶解时间lh左右,溶解后大分子链上水化层膜的相互排斥以及大 分子骨架上羧基(_⑶0-)的静电斥力作用,体现优异的增黏性能(PU W,Liu R,Peng Q,et al.Amphiphilically modified chitosan copolymer for enhanced oil recovery in harsh reservoir condition[J].Journal of Industrial and Engineering Chemistry, 2016,37:216-223)。近年来,开展聚合物驱的油藏已逐渐从常规油藏向稠油、高温、高盐等 特殊油藏推进,对聚合物的性能提出更高的要求。另外,原油开采过程中产出大量的采出 水,采出水经过处理如油水分离、暴氧、杀菌、除杂等措施后回注油藏,不但解决了注水开发 的水源问题,同时降低了采出水的排放处理成本。但是,油田采出水水质复杂,除了地层水 中原始矿物外,还有一些采出水处理过程中的添加剂如破乳剂、杀菌剂、络合剂等。HPAM溶 于水后,由于羧基呈负电性,高分子内部带电基团间和高分子间的静电斥力、基团间的斥 力,使水溶液中的分子链更趋伸展,也就使溶液中的高分子有效体积增加,溶液黏度增大。 同时,高分子的斥力阻碍了分子间的运动,也使溶液黏度增加。但是,由于配注聚合物溶液 的水中含有高价阳离子如Ca 2+、Mg2+,由于这些阳离子比偶极水分子有更强的亲电性,因而 它们优先取代了水分子,与聚合物分子上的羧基形成反电子对,从而屏蔽了高分子链上的 负电荷,使聚合物分子由伸展构象逐渐趋势于卷曲构象,分子有效体积缩小,溶液黏度急剧 下降,长期稳定性不理想(Zhou W, Zhang J,Feng G, Jiang W, Sun F, Zhou S, Liu Y. Key technologies of polymer flooding in offshore oilfield of Bohai Bay.SPE Asia Pacific Oil and Gas Conference and Exhibition.Perth,Australia,October 20-22; Society of Petroleum Engineers,2008)〇
[0004] 聚合物的剪切作用发生在化学驱的所用工艺过程中,主要包括:聚合物在溶解过 程中受配样器的剪切、离心栗的循环剪切、注入系统中受管线的高速剪切、井底阀门剪切、 射孔炮眼和压力差异导致多孔介质的高速剪切、岩石表面和孔隙吼道的一般性剪切等。其 中,从注入井向地层渗流过程中受射孔炮眼的剪切最严重。研究表明,聚合物的分子量越 大,抗剪切性能越差,超高分子量的HPAM的黏度保留率仅为初始黏度的20~25 %。
[0005] 综上分析可知,ΗΡΑΜ线性分子链上单一的结构单元(-C0NH2和-C00_),不满足产出 水配制聚合物的要求,同时HPAM的抗剪切性能差,这些因素都成为限制产出水配注HPAM驱 推广应用的瓶颈。因此,从聚合物分子结构设计出发,改变单一的线性分子结构,制备出新 型聚合物是解决油田产出水配注聚合物规模化推广应用的关键。

【发明内容】

[0006] 本发明的目的在于提供适用于油田产出水的核-壳形聚合物,该聚合物以功能化 的聚酰胺-胺杂化超细化二氧化硅为核,亲水链的骨架单元携带少量的疏水单元为壳,呈支 化结构,支链的分子量低,保证聚合物在油田产出水的溶解性能,溶解后亲水链上的超分子 效应形成可逆的网络结构保证聚合物的增黏性,提高了聚合物的抗剪切性和长期稳定性, 从而实现产出水配注聚合物驱油的目的。
[0007] 本发明的另一目的还在于提供上述适用于油田产出水的核-壳形聚合物的制备方 法,通过该方法制备的核-壳形聚合物,克服了部分水解聚丙烯酰胺不适合油田产出水配注 聚合物驱的缺陷,特别适合多种类型的油田产出水配注,开展化学驱,亦适用于水处理、日 用化学等领域,同时原材料来源易得,原理可靠,经济效益突出,应用前景广阔。
[0008] 为达到以上技术目的,本发明采用以下技术方案。
[0009] 适用于油田产出水的核-壳形聚合物,以功能化的聚酰胺-胺杂化超细化二氧化硅 (Si02PAMAMF)为核,以丙烯酰胺(AM)、丙烯酸(AA)为亲水单体,以甲基-N,N-二己(辛)基丙 烯酰胺(MeDiC 6AM或MeDiCsAM)为疏水单体,由氧化还原体系(NH4)2S2〇8-NaHS0 3引发聚合反 应,制备成水凝胶,经过烘干、粉碎和筛分而成,所述聚合物结构如下:
[0010]
[0011] R为 C6Hi3 或 CsHi7
[0012] 其中:w、x、y、z为结构单元的质量百分比,X为60~73%,y为18~25%,z为0.5~ 1%,w=l-x-y_z,聚合物的重均分子量为700-1200 X 104g/mol。
[0013] 所述甲基-N,N-二己(辛)基丙烯酰胺为甲基-N,N-二己基丙烯酰胺(MeDiC6AM)或 甲基-N,N-二辛基丙烯酰胺(MeDiCsAM)。
[0014] 上述适用于油田产出水的核-壳形聚合物的制备方法,依次包括以下步骤:
[0015] (1)制备功能化的聚酰胺-胺杂化超细化二氧化硅
[0016] ①偶联剂对超细化二氧化硅的表面改性:将10-15g纳米二氧化硅、100-150g甲醇 加到三颈瓶中,超声波振荡分散30min,加入10-15g偶联剂乙烯基三甲氧基硅烷并搅拌,在 温度60°C下反应6-8h,冷却,用甲醇洗涤并真空抽滤、烘干,得到表面改性的超细化二氧化 娃;
[0017] ②聚酰胺-胺杂化超细化二氧化硅:将5.0-8.2g表面改性的超细化二氧化硅、80-l〇〇g甲醇加到三颈瓶中,超声波振荡分散30min,加入1.0代聚酰胺-胺5-8.5g搅拌,在25°C 下反应6-8h,用甲醇洗涤并真空抽滤、烘干,得到聚酰胺-胺杂化的超细化二氧化硅;
[0018] ③聚酰胺-胺杂化超细化二氧化硅的功能化改性:将3.5-4.2g聚酰胺-胺杂化的超 细化二氧化硅、30-45g二甲亚砜加到三颈瓶中,超声波振荡分散30min,在冰盐浴条件下逐 滴加入5-7g马来酸酐的二甲亚砜溶液(溶液中马来酸酐的质量百分数为20 % ),滴加完成 后,缓慢搅拌并升温至65°C,反应6-8h,冷却、过滤,用甲醇反复洗涤并真空抽滤、烘干,得到 功能化的聚酰胺-胺杂化超细化二氧化硅(Si0 2PAMAMF)。
[0019] (2)制备疏水单体甲基-N,N-二己(辛)基丙烯酰胺
[0020] 在三口烧瓶中加入10-15g二己胺或二辛胺,用20-30g二氯甲烷溶解,再加入11-13g三乙胺,在冰水浴中搅拌,利用恒压滴液漏斗缓慢滴加25-37g甲基丙烯酰氯的二氯甲烷 溶液(溶液中甲基丙烯酰氯的质量百分数为40%),滴加完毕后,升温至室温反应4-8小时。 利用饱和盐水洗涤分液,将有机层洗至中性,分液,旋蒸得到淡黄色液体,为甲基-N,N-二己 (辛)基丙烯酰胺,即甲基-N,N-二己基丙烯酰胺(MeDiC 6AM)或甲基-N,N-二辛基丙烯酰胺 (MeDiCsAM)。
[0021] (3)制备核-壳形聚合物
[0022] 将0.1-0.25g功能化的聚酰胺-胺杂化超细化二氧化硅单体(Si02PAMAMF)、15.5-18.5g丙烯酰胺(AM)、3.5-5.5g丙烯酸(AA)、0.5-1.0g甲基-N,N-二己(辛)基丙烯酰胺单体, 0.3-1.2g十二烷基硫酸钠(SDS),加入去离子水搅拌溶解,配成单体质量总浓度为25-30% 的水溶液,用NaOH溶液调节pH值为5~7,通N230min后,加入0 · 05-0 · 085g引发剂(NH4)2S2〇8-NaHS03,(NH4)2S 2〇8与NaHS03质量比为1:1.2,在40~50°(:条件下进行水相自由共聚反应,6~ 12h后得到半透明的水凝胶,经过烘干、粉碎,得到核-壳形聚合物。
[0023] 该核-壳形聚合物的核为刚性结构,增强聚合物的耐温、抗剪切及长期稳定性能; 壳由亲水链及其上面少量的孪尾疏水基团组成,增强聚合物溶解性的同时,孪尾疏水基团 通过超分子效应显著提高聚合物溶液的黏度。
[0024] 与现有技术相比,本发明具有以下有益效果:
[0025] ①功能化的聚酰胺-胺杂化超细化二氧化硅具备多层次的亲水结构,在水相中的 分散性能好,核的表面功能基团呈多支化的结构;
[0026] ②核-壳形聚合物的壳由亲水链及其上面少量的孪尾疏水基团组成,保证聚合物 在产出水中溶解性的同时,孪尾疏水基团通过超分子效应显著提高产出水配制聚合物溶液 的黏度;
[0027] ③核-壳形聚合物的核为刚性结构,增强聚合物的耐温、抗剪切及长期稳定性能;
[0028] ④核-壳形聚合物适合多种类型的油田产出水配注,开展化学驱,亦适用于水处 理、日用化学等领域;
[0029]⑤本发明原料易得,水相自由基共聚反应条件温和、经济效益突出。
【附图说明】
[0030] 图1为本发明核-壳形聚合物的红外光谱图。
[0031] 图2为油田产出水配制核-壳形聚合物的黏-浓关系图。
【具体实施方式】
[0032]下面结合实施例和附图对本发明做进一步说明,但不限制本发明。
[0033]所述实施例中所用的材料和试剂,如无特殊说明,均从商业途径获得。
[0034] 一、核-壳形聚合物的制备
[0035]实施例1甲基-N,N_二己基孪尾核-壳型聚合物的制备
[0036] (1)偶联剂对超细化二氧化硅的表面改性:将12.5g纳米二氧化硅、130g甲醇加到 三颈瓶中,超声波振荡分散30min,加入13.5g乙烯基三甲氧基硅烷并搅拌,在温度60 °C下反 应8h,冷却,用甲醇洗涤并真空抽滤、烘干,得到表面改性的超细化二氧化硅;
[0037] (2)聚酰胺-胺杂化超细化二氧化硅:将6.0g表面改性的超细化二氧化硅、85g甲醇 加到三颈瓶中,超声波振荡分散30min,加入1.0代聚酰胺-胺5.6g搅拌,在25°C下反应6h,用 甲醇洗涤并真空抽滤、烘干,得到聚酰胺-胺杂化的超细化二氧化硅;
[0038] (3)聚酰胺-胺杂化超细化二氧化硅的功能化改性:将3.8g聚酰胺-胺杂化的超细 化二氧化硅,38g二甲亚砜加到三颈瓶中,超声波振荡分散30min,在冰盐浴条件下逐滴加入 6g马来酸酐的二甲亚砜溶液(马来酸酐的质量百分数20%)。滴加完成后,缓慢搅拌并升温 至65°C,反应6h,冷却、过滤,用甲醇反复洗涤并真空抽滤、烘干,得到功能化的聚酰胺-胺杂 化超细化二氧化硅。
[0039] (4)甲基-N,N_二己基丙烯酰胺的制备
[0040]在三口烧瓶中加入10g的二己胺,并用25g二氯甲烷溶解,加入11.5g三乙胺。在冰 水浴中搅拌,利用恒压滴液漏斗缓慢滴30g甲基丙烯酰氯的二氯甲烷溶液(甲基丙烯酰氯的 质量百分数40% ),滴加完毕后升温至室温反应6h。利用饱和盐水洗涤分液,将有机层洗至 中性,分液,旋蒸得到淡黄色液体,得甲基-N,N-二己基丙烯酰胺。
[0041] (5)甲基-N,N-二己基孪尾核-壳形聚合物的制备
[0042]将0 . lg功能化聚酰胺-胺杂化纳米二氧化硅单体、15.5g丙烯酰胺、4.5g丙烯酸、 0.5g甲基-N,N-二己基丙烯酰胺,0.75g十二烷基硫酸钠(SDS),加入离子水搅拌溶解,NaOH 溶液调节pH值为5~7,用去离子水配成单体质量总浓度为25 %的水溶液,通N230min后,加 入0.075g(NH4)2S208-NaHS0 3( (NH4)2S2〇8与NaHS03质量比为1:1.2),在45°C条件,进行水相自 由共聚反应,反应时间8h,得到半透明的水凝胶,经过烘干、粉碎得到核-壳形聚合物。
[0043]实施例2甲基-N,N_二辛基孪尾核-壳形聚合物的制备
[0044] (1)偶联剂对超细化二氧化硅的表面改性:将15g纳米二氧化硅、150g甲醇加到三 颈瓶中,超声波振荡分散30min,加入15g偶联剂乙烯基三甲氧基硅烷并搅拌,在温度60°C下 反应8h,冷却,用甲醇洗涤并真空抽滤、烘干,得到表面改性的超细化二氧化硅;
[0045] (2)聚酰胺-胺杂化超细化二氧化硅:将8.0g表面改性的超细化二氧化硅、100g甲 醇加到三颈瓶中,超声波振荡分散30min,加入1.0代聚酰胺-胺8.5g搅拌,在25°C下反应8h, 用甲醇洗涤并真空抽滤、烘干,得到聚酰胺-胺杂化的超细化二氧化硅;
[0046] (3)聚酰胺-胺杂化超细化二氧化硅的功能化改性:将4.2g聚酰胺-胺杂化的超细 化二氧化硅,45g二甲亚砜加到三颈瓶中,超声波振荡分散30min,在冰盐浴条件下逐滴加入 7.5g马来酸酐的二甲亚砜溶液(马来酸酐的质量百分数20%)。滴加完成后,缓慢搅拌并升 温至65°C,反应8h,冷却、过滤,用甲醇反复洗涤并真空抽滤、烘干,得到功能化的聚酰胺-胺 杂化超细化二氧化硅。
[0047] (4)甲基-N,N_二辛基丙烯酰胺的制备:在三口烧瓶中加入15g二辛胺,并用30g二 氯甲烷溶解,加入12. lg三乙胺。在冰水浴中搅拌,利用恒压滴液漏斗缓慢滴35g甲基丙烯酰 氯的二氯甲烷溶液(甲基丙烯酰氯的质量百分数40%),滴加完毕后升温至室温反应8h。利 用饱和盐水洗涤分液,将有机层洗至中性,分液,旋蒸得到淡黄色液体,即是甲基-N,N-二辛 基丙烯酰胺。
[0048] (5)核-壳形聚合物的制备:将0.15g功能化聚酰胺-胺杂化纳米二氧化娃单体、 18.5g丙烯酰胺、5.5g丙烯酸、l.Og甲基-N,N-二辛基丙烯酰胺单体,l.Og十二烷基硫酸钠 (SDS),加入离子水搅拌溶解,NaOH溶液调节pH值为5~7,用去离子水配成单体质量总浓度 为 30 % 的水溶液,通 N230min 后,加入 0 · 05g(NH4)2S208-NaHS03( (NH4)2S2〇8 与 NaHS03 质量比为 1:1.2),在40°C条件,进行水相自由共聚反应,历时12h,得到半透明的水凝胶,经过烘干、粉 碎得到核-壳形聚合物。
[0049] 二、核-壳形聚合物的红外谱图分析(以实施例2制备的核-壳形聚合物为例)
[0050] 乙醇和丙酮反复清洗核-壳形聚合物除去未反应的单体和残留物,提纯后的核-壳 形聚合物红外图谱如图1所示:-NH2和-OH的伸缩振动吸收峰位于3421.101^,-012^-01-的 伸缩振动吸收峰位于2928cm- 1385001^,-^2、-NH-的弯曲振动及-C = 0伸缩振动吸收峰位 于1665.2(311^,(:4和N-H的混合弯曲振动吸收峰位于HAgcnfS-COOl!动吸收峰位于 1253〇11_ 1,31-0的伸缩振动吸收峰位于1118〇11_1,-〇1-的弯曲振动吸收峰位于667〇11_ 1、 573cm-1。
[0051] 三、核-壳形聚合物的增黏性能测试
[0052]采用某油田产出水I类、产出水II类配制核-壳形聚合物,产出水的水质组成如表1 所示。用BrookfieId DV-III黏度计测定聚合物的黏浓关系,剪切速率7.34JT1。核-壳形聚合 物的增黏性能如图2所示。核-形聚合物在低矿化度的I类产出水中增黏性能优异,II类产出 水中也具备良好的增黏性能,说明核-壳形聚合物特别适合产出水配注,实施聚合物驱。 [0053] 表1油田产出水I类、II类水质组成
[0054]
[0055]
[0056] 四、核-壳形聚合物的抗剪切性能测试
[0057] 以1类、11类某油田产出水配制聚合物浓度180011^/1,8仰〇1^161(10¥-111黏度计 在剪切速率7.34JT1测试初始黏度。聚合物溶液在3000RPM/min的吴茵搅拌器中高速剪切 2min,静置12h,测试聚合物的黏度,如表2所示,油田产出水配制的核-壳形聚合物经高速剪 切后的黏度保留率高于83%,表现出优异的抗剪切性能。
[0058] 表2高速剪切后核-壳聚合物的黏度保留情况
[0059]
【主权项】
1. 适用于油田产出水的核-壳形聚合物,W功能化的聚酷胺-胺杂化超细化二氧化娃为 核,W丙締酷胺、丙締酸为亲水单体,W甲基-N,N-二己(辛)基丙締酷胺为疏水单体,由氧化 还原体系(NH4)2S2〇8-NaHS化引发聚合反应,制备成水凝胶,经过烘干、粉碎和筛分而成,所述 甲基-N,N-二己(辛)基丙締酷胺为甲基-N,N-二己基丙締酷胺或甲基-N,N-二辛基丙締酷 胺。2. 如权利要求1所述的适用于油田产出水的核-壳形聚合物,所述聚合物结构如下:R为C6化3或。化7 其中:w、x、y、z为结构单元的质量百分比,X为60~73%,y为18~25%,z为0.5~1%,w = l-χ-y-z,聚合物的重均分子量为700-1200X104g/mol。3. 如权利要求1或2所述的适用于油田产出水的核-壳形聚合物的制备方法,依次包括 W下步骤: (1) 制备功能化的聚酷胺-胺杂化超细化二氧化娃 ① 将10-15g纳米二氧化娃、100-150g甲醇加到Ξ颈瓶中,超声波振荡分散30min,加入 l〇-15g偶联剂乙締基Ξ甲氧基硅烷并揽拌,在溫度60°C下反应6-化,冷却,洗涂并真空抽 滤、烘干,得到表面改性的超细化二氧化娃; ② 将5.0-8.2g表面改性的超细化二氧化娃、80-100g甲醇加到Ξ颈瓶中,超声波振荡分 散30min,加入1.0代聚酷胺-胺5-8.5g揽拌,在25°C下反应6-化,洗涂并真空抽滤、烘干,得 到聚酷胺-胺杂化的超细化二氧化娃; ③ 将3.5-4.2g聚酷胺-胺杂化的超细化二氧化娃、30-45g二甲亚讽加到Ξ颈瓶中,超声 波振荡分散30min,在冰盐浴条件下逐滴加入5-7g马来酸酢的二甲亚讽溶液(溶液中马来酸 酢的质量百分数为20%),缓慢揽拌并升溫至65°C,反应6-化,冷却、过滤,洗涂并真空抽滤、 烘干,得到功能化的聚酷胺-胺杂化超细化二氧化娃; (2) 制备疏水单体甲基-N,N-二己(辛)基丙締酷胺 在Ξ 口烧瓶中加入10-15g二己胺或二辛胺,用20-30g二氯甲烧溶解,再加入ll-13gS 乙胺,在冰水浴中揽拌,缓慢滴加25-37g甲基丙締酷氯的二氯甲烧溶液(溶液中甲基丙締酷 氯的质量百分数为40%),升溫至室溫反应4-8小时,洗涂、分液、旋蒸得到淡黄色液体,即为 甲基-N,N-二己(辛)基丙締酷胺; (3) 制备核-壳形聚合物 将0.1-0.25g功能化的聚酷胺-胺杂化超细化二氧化娃单体、15.5-18.5g丙締酷胺、 3.5-5.5g丙締酸、ο. 5-1. Og甲基-N,N-二己(辛)基丙締酷胺单体,ο. 3-1.地十二烷基硫酸 钢,加入去离子水揽拌溶解,配成单体质量总浓度为25-30%的水溶液,调节pH值为5~7,通 化30min后,加入0.05-0.085g引发剂(NH4)2S208-化服〇3,在40~50°C条件下进行水相自由共 聚反应,6~1化后得到半透明的水凝胶,经过烘干、粉碎,得到核-壳形聚合物。4.如权利要求3所述的适用于油田产出水的核-壳形聚合物的制备方法,其特征在于, 所述引发剂(NH4)2S208-N址S〇3中(NH4)2S208与Na服〇3质量比为1:1.2。
【文档编号】C08F283/00GK106084142SQ201610566991
【公开日】2016年11月9日
【申请日】2016年7月19日
【发明人】蒲万芬, 刘锐, 杜代军, 辜炯益
【申请人】西南石油大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1