含氟弹性体的制备方法

文档序号:3709337阅读:597来源:国知局
专利名称:含氟弹性体的制备方法
1.发明领域本发明涉及一种制备含氟弹性体的方法。具体而言,本发明涉及一种或多种氟化单体和一种或多种具有固化部位的液态氟化单体的水乳液聚合方法。如此制得的含氟聚合物适合于制备含氟弹性体(下文也称为含氟弹性体胶)。
2.发明背景含氟弹性体,尤其是全氟弹性体(如″Modern Fluoropolymers″,John Scheirs编辑,Wiley Science,1997描述的那些),能提供极好的对高工作温度的防护,并且耐许多种化学试剂。含氟弹性体因其耐高温和耐腐蚀性化学物质的能力,以及可使用标准弹性体加工设备来加工所述含氟弹性体胶的能力,已成功地应用于许多用途。例如,含氟弹性体已应用于燃料管理系统,如汽车燃油软管、加油口软管、喷油器O形密封圈等。燃料管理用途要求低的燃料蒸汽渗透以及良好的低温性能、密封性能和挠曲性能。另外,含氟弹性体已用于半导体工业的芯片的制造工艺中,其中含氟弹性体可用作芯片制造设备的密封件。在芯片的制造过程中,含氟弹性体可置于高温和腐蚀性化学物质中。此外,含氟弹性体也被用作电缆绝缘体。
含氟弹性体是通过使含氟弹性体前体(“含氟弹性体胶”)固化来制备的,所述含氟弹性体前体由含有一个或多个氟原子的单体、或者这些单体与其它单体的共聚物(含氟单体以最大质量比存在)制得。所述含氟弹性体前体是适于制备具有所需弹性性能的含氟弹性体的含氟聚合物。通常,所述含氟弹性体前体是非晶态含氟聚合物或者几乎不显示熔点的含氟聚合物。当所述含氟聚合物具有全氟化的主链时,可以形成全氟弹性体,但是也可以使用具有部分氟化的主链的聚合物。
常用的制备含氟聚合物的方法是水乳液聚合,它与在溶剂中聚合相比对环境更有利。通常,氟化单体的水乳液聚合在氟化表面活性剂存在的条件下进行,虽然也已经开发出了不向聚合体系中添加氟化表面活性剂的工艺。
本领域中竭力开发了水乳液聚合方法的多种改进方法以提高该方法的某些方面或者实现具体的目标。例如,本领域中普遍重视预乳化一种或多种氟化单体。
本领域中已经有人提出在氟化单体的水乳液聚合中使用微乳液。微乳液是油、水和表面活性剂的稳定的各向同性混合物,该混合物在上述组分接触时就自发形成。其它组分,如盐或助表面活性剂(醇、胺或其它两性分子),也可以成为微乳液配方的一部分。油和水位于由富含表面活性剂的界面层隔开的性质不同的区内。由于油区域或水区域很小,因此肉眼看来微乳液是透明或半透明的。与以上那些参考文献揭示的乳液和预乳液不同,微乳液是平衡相。
通过水乳液聚合得到的含氟聚合物如果含有能参与固化反应形成三维网络的所谓固化部位,就可以被固化成含氟弹性体。熟知的用来固化含氟聚合物的固化反应包括使用过氧化物,含氟聚合物含有能参与过氧化物固化反应的卤素,如溴或碘。这些卤素通常通过一种或多种氟化单体与一种含所述卤素的氟化单体的共聚合来引入含氟聚合物。
或者,含氟聚合物可具有一个或多个得自具有腈基的氟化单体的单元。所述腈基可用来在产生氨的化合物或者其它能导致腈基固化的固化剂或催化剂的存在下固化含氟聚合物。
现已发现,当通过水乳液聚合制得具有上述固化部位(得自含一个或多个固化部位的相应单体)的含氟聚合物时,固化该含氟聚合物后的所得含氟弹性体会具有外观上发亮潮湿的表面。此外,可从含氟弹性体提取的有机物质的量会不良得高。外观上发亮潮湿的表面以及大量可提取的有机物质使得该含氟弹性体不适合某些用途,特别是要求较为严格的用途。当使用少量(如1摩尔%或更少)的固化部位单体时,上述影响尤为突出。
因此,一直需要改进含氟弹性体的性能,尤其是改进通过水乳液聚合方法由含氟聚合物制得的含氟弹性体的性能。
3.发明概述据发现,由全氟化的链烷磺酸或链烷羧酸或者它们的盐、含固化部位的液态氟化单体和任选的惰性、液态且高度氟化的烃类化合物可以获得水性微乳液。水性微乳液可以通过将水、全氟化的链烷磺酸或链烷羧酸或者它们的盐、可任选的惰性、液态且高度氟化的烃类化合物以及含固化部位的液态氟化单体混合在一起来形成。轻轻搅拌上述组分和/或可任选地加热该混合物即可形成微乳液。采用加热时,通常将混合物加热至一能形成透明澄清混合物的温度,然后使该混合物冷却至室温。
本发明的另一方面提供一种能固化成含氟弹性体的含氟聚合物的制备方法,该方法包括水乳液聚合一种或多种氟化单体和一种或多种含固化部位的液态氟化单体,其中至少在水乳液聚合反应过程的初始阶段以上述水性微乳液形式提供至少一部分所述液态氟化单体。
本发明还有一个方面提供一种可固化的含氟弹性体组合物的制备方法,该方法包括以下步骤提供由上述方法制得的含氟聚合物,将该含氟聚合物与一种固化组合物混合,所述固化组合物含有一种或多种能通过所述含氟聚合物的固化部位组分实现所述含氟聚合物固化的化合物。
本发明再有一个方面是提供一种含氟弹性体的制备方法,该方法中对上述可固化的含氟弹性体组合物进行固化。
本发明还有一个方面是提供一种固化的含氟聚合物,它可由固化一种包含得自含固化部位的液态氟化单体的单元的含氟聚合物而得到,用全氟苯索格利特萃取该固化的含氟聚合物20小时,可提取的有机组分量小于该固化的含氟聚合物重量的5重量%。
据发现,在水乳液聚合反应过程的至少初级阶段使用含固化部位的液态氟化单体的微乳液来制备含氟聚合物,能显著改进由该含氟聚合物固化制得的含氟弹性体。具体来说,固化之后的该含氟弹性体不再具有潮湿发亮的外观,并且可从该含氟聚合物中提取的有机组分量降低。此外,制得的含氟弹性体显示良好的物理和机械性能,使得含氟弹性体甚至可适用于要求更苛刻的用途。
4.发明的详细说明本发明的微乳液是液态氟化单体、可任选的惰性、液态且高度氟化的烃类化合物、水以及氟化的表面活性剂的稳定的各向同性的混合物。该微乳液通常在上述组分接触或轻轻搅拌这些组分和/或可任选地加热这些组分时自发形成。采用加热时,微乳液形成的温度(即得到透明澄清混合物时的温度)通常在40℃至90℃的范围内。冷却时该混合物保持透明澄清。液态氟化单体和可任选的惰性、液态且高度氟化的烃的混合物在水性介质中形成性质不同的油区(oildomains),被富含表面活性剂的界面层隔开。因为油区和水区(water domains)都很小,所以肉眼看上去微乳液是透明或半透明的。与乳液不同,微乳液是平衡相。虽然微乳液仅在氟化表面活性剂和含固化部位的液态氟化单体之间形成,可通过加入惰性、液态且高度氟化的烃类化合物使得能以微乳液形式获得的液态氟化单体的量更大。
与氟化单体或者惰性且高度氟化的烃有关的术语“液态”是指各组分在环境温度和压力条件(即约20℃和约1个大气压)下是液态。
本发明的术语“高度氟化(的)”用来指大多数和最好是全部的氢原子被氟原子取代的化合物,以及大部分氢原子被氟原子取代、剩余的氢原子中大多数或全部被溴、氯或碘取代的化合物。一般来说,本发明的高度氟化的化合物只有很少的氢原子(如1个或2个氢原子)被除氟以外的卤素取代和/或只剩下1个或2个氢原子。在并非所有的氢原子被氟或者其它卤素取代(即该化合物不是全氟化)的情况下,氢原子应位于化合物中基本上不会发生链转移的位置,也就是说,该化合物在聚合反应中用作惰性物质,该化合物不参与自由基聚合反应。所有氢原子均被氟原子和/或其它卤素原子取代的化合物本发明中称作“全氟化的”化合物。
可用来制备微乳液的氟化表面活性剂是通常具有4-15个碳原子,较好是8个碳原子的全氟化的链烷磺酸或链烷羧酸或者它们的盐。较佳地,所述氟化的表面活性剂对应于以下通式(Y-Rf-Z)n-M (I)式中,Y表示Cl或F;Rf表示具有3-15个碳原子,较好是4-10个碳原子的直链或支链全氟化亚烷基;Z表示COO-或SO3-;M表示阳离子,包括单价和多价阳离子;n为M的化合价。阳离子的例子包括铵,碱金属阳离子如钠、钾和锂,以及碱土金属阳离子如钙或镁。
可用来制备微乳液的惰性、液态且高度氟化的烃类化合物通常包含3-25个碳原子,较好是5-20个碳原子,并且可含有最多2个选自氧、硫或氮的杂原子。适宜的高度氟化的烃类化合物是全氟化烃类化合物。合适的全氟化烃包括全氟化的饱和的直链、支链和/或环状脂族化合物,如全氟化的直链、支链或环状烷烃;全氟化的芳香族化合物,如全氟化苯,或者全氟化十四氢菲。也可以是全氟化烷基胺,如全氟化三烷基胺。还可以是全氟化的环状脂族化合物,如萘烷;较好是在环中含有氧或硫的杂环脂族化合物,如全氟-2-丁基四氢呋喃。
全氟化烃的具体例子包括全氟-2-丁基四氢呋喃、全氟萘烷、全氟甲基萘烷、全氟甲基环己烷、全氟(1,3-二甲基环己烷)、全氟二甲基十氢化萘、全氟芴、全氟(十四氢菲)、全氟二十四烷、全氟煤油、八氟萘、聚(三氟氯乙烯)的低聚物、全氟(三烷基胺)如全氟(三丙胺)、全氟(三丁胺)或全氟(三戊胺)、以及八氟甲苯、六氟苯和工业的氟化溶剂如3M公司生产的Fluorinert FC-75、FC-72、FC-84、FC-77、FC-40、FC-43、FC-70、FC-5312或FZ 348。此外,本领域技术人员可知,可以使用全氟化烃的混合物来制备微乳液。合适的惰性、液态且高度氟化的烃类化合物是C3F7-O-CF(CF3)-CF2-O-CHF-CF3。
用于微乳液的液态氟化单体是含有固化部位的氟化单体,所述固化部位是能随后用来固化水乳液聚合制得的含氟聚合物的官能团。一般来说,固化部位是能参与过氧化物固化反应的卤素,如氯、溴或碘,或者固化部位可以是腈基。在一个优选的实施方案中,具有固化部位的氟化单体是全氟化的。含固化部位的液态氟化单体的例子包括含一个或多个腈基的(全)氟化乙烯基醚、含一个或多个腈基的(全)氟化烯烃、含一个或多个选自氯、溴或碘的卤原子的(全)氟化烯烃、含一个或多个选自氯、溴或碘的卤原子的(全)氟化乙烯基醚。还可使用液态氟化单体的混合物。
在本发明的一个实施方案中,含固化部位的液态氟化单体是对应于以下化学式之一的含腈单体CF2=CF-CF2-O-Rf-CNCF2=CFO(CF2)lCNCF2=CFO[CF2CF(CF3)O]g(CF2)vOCF(CF3)CNCF2=CF[OCF2CF(CF3)]kO(CF2)uCN式中,l为2-12的整数;g为0-4的整数;k为1或2;v为0-6的整数;u为1-6的整数;Rf为全氟亚烷基或二价全氟醚基团。含腈的液态氟化单体的具体例子包括全氟(8-氰基-5-甲基-3,6-二氧杂-1-辛烯)、CF2=CFO(CF2)5CN和CF2=CFO(CF2)3OCF(CF3)CN。
根据另一个实施方案,含固化部位的液态氟化单体对应于以下化学式之一(a)具有以下化学式的溴代或碘代(全)氟化烷基-全氟乙烯基醚Z-Rf-O-CF=CF2
式中,Z是Br或I,Rf是(全)氟化C2-C12亚烷基,可任选地含有氯和/或醚氧原子;例如BrCF2CF2-O-CF=CF2、BrCF2CF2CF2-O-CF=CF2、CF3CFBrCF2-O-CF=CF2等;(b)具有以下化学式的溴代或碘代(全)氟化烯烃Z′-R′f-CF=CF2式中,Z′是Br或I,R′f是(全)氟化C1-C12亚烷基,可任选地含有氯原子;例如三氟溴乙烯、4-溴-全氟丁烯-1等;或者溴代氟化烯烃,例如4-溴-3,3,4,4-四氟丁烯-1。
微乳液可以含有附加组分,尽管这不是必需的。例如,可以向微乳液中加入链转移剂和/或也可以加入其它液态(氟化)单体。例如,可以向微乳液中加入不含固化部位的液态氟化乙烯基醚。然而应该理解,加入到微乳液中的任何组分均应经过选择使之不会破坏微乳液。
形成初始微乳液的各组分含量通常如下选定(所有百分数以占微乳液总重量的重量%表示)5-50%全氟链烷羧酸或磺酸或者它们的盐,0-15%惰性、液态且高度氟化(最好是全氟化)的烃化合物以及5-30%含固化部位的液态氟化单体。优选的范围是10-30%全氟链烷羧酸或磺酸或者它们的盐,0.2-10%惰性、液态且高度氟化(最好是全氟化)的烃化合物以及8-20%含固化部位的液态氟化单体。初始微乳液在使用之前可以进一步稀释1-1000倍,例如在聚合开始之前将微乳液加入到聚合介质中。所述稀释不会影响本发明的优点。
上述微乳液用于水乳液聚合中制备能够被固化成含氟弹性体的含氟聚合物。按照制备含氟聚合物的方法,在水乳液聚合中对一种或多种氟化单体和一种或多种含固化部位的液态氟化单体进行共聚合,其中至少一部分所述液态氟化单体以上述水性微乳液的形式提供。液态氟化单体的水性微乳液至少在聚合反应过程的初始阶段时提供。因此,通常在开始聚合反应之前或者聚合反应之后马上或不久将水性微乳液加入到聚合介质中。这里所说的聚合反应初始阶段是指聚合开始后的第一个5-10分钟。
根据本发明的一个实施方案,可以以如上制得的微乳液形式加入所有的含固化部位的液态氟化单体。然而,这并不是必需的,根据另一个实施方案,部分的液态氟化单体可以微乳液以外的形式加入。一般来说,含固化部位的液态氟化单体总重量的至少2重量%应以微乳液形式加入,优选是含固化部位的液态氟化单体总重量的至少10重量%。当含固化部位的液态氟化单体以微乳液以外的形式加入时,优选是用氟化表面活性剂进行预乳化,从而以水乳液形式加入。该乳液可以通过使用乳化设备(如Ultra-turrax装置和/或微流化装置,如WO1/49752中所述)在水中用氟化表面活性剂乳化液态氟化单体来制得,所述氟化表面活性剂优选是与用于微乳液的那些相同。一般来说,如此形成的乳液的外观是乳白色或不透明的,其平均粒度通常为200nm至1μm。用于水性聚合的含固化部位的液态氟化单体的总量通常应进行选择以使得在所得的含氟聚合物中具有所需含量的固化部位组分。通常,含氟聚合物中得自含固化部位的液态氟化单体的重复单元的量为0.1-5摩尔%,以得自用来形成含氟聚合物的单体的重复单元的总量计。上述含量优选是0.5-3摩尔%。当得自含固化部位的液态氟化单体的重复单元的含量低(例如不超过1.5摩尔%)时,尤其是当含量不超过1摩尔%时,本发明是最有效的。
用于与含固化部位的液态氟化单体共聚合的一种或多种氟化单体包括至少一种氟化烯烃,例如四氟乙烯(TFE)、三氟氯乙烯(CTFE)、六氟丙烯(HFP)和偏二氟乙烯(VDF)。通常与一种或多种上述氟化烯烃结合使用的其它氟化单体包括(全)氟化乙烯基醚和(全)氟化烯丙基醚。而且,聚合反应还可以涉及非氟化单体,如乙烯(E)和丙烯(P)。在一个特别好的实施方案中,制得的含氟聚合物具有全氟化的主链。该全氟化的聚合物可通过在聚合反应中只使用全氟化单体来制得。然而,本发明也可用来制备具有部分氟化的主链的聚合物,但该含氟聚合物主链中的氟含量通常为至少35重量%,更好是至少50重量%,最好是至少65重量%。
全氟化乙烯基醚单体的例子包括对应于以下化学式的单体CF2=CF-O-Rf式中,Rf表示全氟化脂族基团,它可含有一个或多个氧原子。优选是,全氟化乙烯基醚对应于以下通式CF2=CFO(RfO)n(R′fO)mR″f其中,Rf和R′f是不同的含2-6个碳原子的直链或支链全氟亚烷基,m和n各自是0-10,R″f是含1-6个碳原子的全氟烷基。以上化学式所示的全氟化乙烯基醚的例子包括全氟-2-丙氧基丙基乙烯基醚(PPVE-2)、全氟-3-甲氧基正丙基乙烯基醚、全氟-2-甲氧基乙基乙烯基醚、全氟甲基乙烯基醚(PMVE)、全氟正丙基乙烯基醚(PPVE-1)和CF3-(CF2)2-O-CF(CF3)-CF2-O-CF(CF3)-CF2-O-CF=CF2。
可用本发明方法制备的含氟聚合物的具体例子包括那些包含得自以下多种单体组合的多种重复单元组合的含氟聚合物偏二氟乙烯(VDF)、六氟丙烯(HFP)和CSM;TFE、VDF和CSM;TFE、P和CSM;TFE、CSM和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合);VDF、CSM和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合);TFE、E或P、CSM和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合);TFE、CSM、HFP和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合);TFE、VDF、HFP、CSM和任选的CTFE;TFE、VDF、CSM和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合);TFE、E或P、HFP、CSM和全氟乙烯基醚(如PMVE、PPVE-1、PPVE-2或者PPVE-1和PPVE-2的组合)。在上文中,CSM是液态氟化固化部位单体的缩写,优选是含腈的氟化乙烯基醚。
除了使用微乳液之外,水乳液聚合方法通常以熟知的方式进行。优选的聚合温度是10-100℃,更好是30-80℃,压力为4-30巴,特别好是6-15巴。
聚合反应一般通过使用产生自由基的引发剂来引发。可以使用通常用于聚合氟化单体的已知引发剂的任一种作为引发剂。例如,过氧化物可用作自由基引发剂。过氧化物引发剂的具体例子包括过氧化氢、过氧化钠或过氧化钡、过氧化二酰基,如过氧化二乙酰、过氧化二丙酰、过氧化二丁酰、过氧化二苯甲酰、过氧化苯甲酰乙酰、过氧化二戊二酸(diglutaric acid peroxide)和过氧二月桂酰,还包括水溶性过酸(per-acids)及其水溶性盐,如铵盐、钠盐或钾盐。过酸的例子包括过乙酸。还可使用过酸的酯,其例子包括过氧乙酸叔丁酯和过氧新戊酸叔丁酯。可用的另一类引发剂是水溶性偶氮化合物。合适的用作引发剂的氧化还原体系包括例如过二硫酸盐和亚硫酸氢盐/酸式亚硫酸盐的组合,硫代硫酸盐和过二硫酸盐的组合,过二硫酸盐和肼或偶氮二碳酰胺(包括其盐,优选是碱金属盐或铵盐)的组合。可用的其它引发剂是高锰酸或锰酸的铵盐、碱金属盐或碱土金属盐,或者锰酸。
一个特别好的引发剂体系包括使用自由基引发剂,如高锰酸或其盐如高锰酸钾、过硫酸盐、以及氯化物盐如以下通式表示的氯化物盐MCln式中,M表示单价或多价阳离子,n为所述阳离子的化合价。适宜的阳离子M包括有机阳离子和无机阳离子。特别有用的阳离子是铵和金属阳离子,包括单价阳离子如钠和钾,以及二价阳离子如钙和镁。氯化铵盐的例子包括四烷基氯化铵,如四丁基氯化铵。使用该聚合体系的优点是能方便地减少所得含氟聚合物中离子端基的数目。通常,随着氯化物盐用量的增加,离子端基的数目会减少。可以认为,在引发体系中使用氯化物盐导致了CF2Cl端基的形成。通常,选择氯化物盐的量使得氯离子与引发剂(如高锰酸盐)的摩尔比为1∶0.1至0.1∶10,较好是1∶0.5至0.1∶5。
另一种降低含氟聚合物中离子端基量的方法包括使用含氟脂族亚磺酸盐和能将所述亚磺酸盐氧化为磺酰基自由基的氧化剂的组合,如US5,285,002中所述。适宜的氧化剂包括例如过硫酸盐,如过硫酸铵。
因此,根据一个具体的实施方案,当含氟聚合物是全氟聚合物时,选择引发剂体系及其用量以使所得全氟聚合物中离子端基的量为以该全氟聚合物的傅里叶变换红外光谱中1840cm-1-1620cm-1区域内积分峰强度(integrated peakintensity)与2740cm-1-2220cm-1区域内积分峰强度计算确定的吸光度比值(absorbance ratio)小于0.1。
引发剂的用量通常在0.01-2重量%,优选在0.03-1重量%的范围内,以聚合混合物的总重量计。可以在聚合反应开始时加入全部量的引发剂,也可以在聚合反应过程中以连续方式加入引发剂直至获得70-80%的转化率。还可以在聚合开始时加入部分引发剂,其余引发剂在聚合过程中一批或分几批加入。优选可加入促进剂(如铁、铜和银的水溶性盐),尤其是在氧化还原体系用作引发剂时。
水乳液聚合体系还可包含其它物质,如缓冲剂,如有必要还包含配合物形成剂或链转移剂。可以向水性聚合介质中加入额外的氟化的表面活性剂,但这不是必需的,这取决于用于制备微乳液的氟化的表面活性剂的量以及加入聚合体系中的微乳液的量。当需要额外的氟化的表面活性剂(例如用来稀释微乳液)时,通常优选使用与制备微乳液时相同的氟化的表面活性剂,或者可使用具有类似性质的氟化表面活性剂。一般来说,用于水乳液聚合的氟化的表面活性剂的总量为0.1-5重量%,以要制得的含氟聚合物的重量计。
用本发明方法制得含氟聚合物适用于制备含氟弹性体。为了获得含氟弹性体,对一种可固化的含氟弹性体组合物进行固化,该组合物包含所述含氟聚合物和一种固化组合物。可固化的含氟弹性体组合物可以用本领域技术人员已知的任一方法进行固化。所述固化组合物通常包含一种或多种能使含氟聚合物链互相连接形成三维网络的组分。这些组分可包括催化剂、固化剂和/或活性助剂。
当含氟聚合物包括含有能参与过氧化物固化反应的卤素的固化部位时,所述固化组合物通常包括一种有机过氧化物。适宜的有机过氧化物是在固化温度下产生自由基的过氧化物。特别优选在50℃以上的温度分解的二烷基过氧化物或双(二烷基过氧化物)。在许多情况下,优选使用具有一个连接在过氧态氧上的叔碳原子的二叔丁基过氧化物。该类中最有用的过氧化物是2,5-二甲基-2,5-二(叔丁基过氧)己炔-3和2,5-二甲基-2,5-二(叔丁基过氧)己烷。其它过氧化物可选自以下化合物过氧化二枯基、过氧化二苯甲酰、过苯甲酸叔丁酯、α,α′-二(叔丁基过氧-二异丙苯)和二[1,3-二甲基-3-(叔丁基过氧)-丁基]碳酸酯。通常,每100份含氟聚合物使用约1-3份的过氧化物。
当含氟聚合物包括含腈的固化部位组分时,可使用包含一种或多种产生氨的化合物的催化剂来导致固化。“产生氨的化合物”包括在环境条件下为固体或液体,但是在固化条件下产生氨的化合物。这些化合物包括例如六亚甲基四胺(乌洛托品)、双氰胺、以及具有以下通式的含金属的化合物Aw+(NH3)vYw-式中,Aw+是金属阳离子,如Cu2+、Co2+、Co3+、Cu+和Ni2+;w等于所述金属阳离子的化合价;Yw-是抗衡离子,通常为卤离子、硫酸根、硝酸根、乙酸根等;v是1至约7的整数。
取代和未取代的三嗪衍生物,如以下通式表示的化合物也可用作产生氨的化合物 式中,R是氢或者具有1至约20个碳原子的取代或未取代烷基、芳基或芳烷基。具体的有用的三嗪衍生物包括六氢-1,3,5-s-三嗪和乙醛氨三聚物。当产生氨的化合物用来固化具有腈基的含氟聚合物时,其用量通常为每100重量份含氟聚合物0.1-10份(phr),以将所述含氟聚合物固化为具有所需的物理和机械性能的弹性体。
另一种可用来固化含腈的含氟聚合物的组分包括具有以下通式的化合物
式中,基团HA1是无机或有机酸,例如HCl、HNO3、C7F15COOH,R1、R2和R3各自独立地为具有1至约20个碳原子的相同或不相同的烷基,它们可以是环状的或杂环的,而一个R基团也可以是与另一个R基团连接的键,使得氮连接在链烯基、环烯基或芳族基上或者成为链烯基、环烯基或芳族基的一部分。所述取代基还可以是烯属的,例如单、二和三烷基胺盐,以及吡啶盐。上述通式(II)的化合物的例子包括具有以下通式的化合物 式中,m和n各自为2-20。
优选的通式(IIA)化合物的例子包括其中m=3和n=5以及其中m=4和n=2的化合物。它包括例如1,8-二氮杂二环[5,4,0]十一碳-7-烯(DBU)的盐和1,5-二氮杂二环[4,3,0]壬-5-烯(DBN)的盐。这些盐可通过例如使DBU或DBN与有机或无机酸在有机溶剂(如甲醇或丙酮)中反应来制备,或者它们可原位制备。酸可以是有机酸或无机酸,例如C7F15COOH,或者含有任一种烃或氟的碳酸、磺酸等,以及无机酸,如HCl、HNO3等,这些酸形成稳定盐。另一种优选的通式IIA的化合物是吡啶盐酸盐。通式(II)或(IIA)的化合物的用量为0.05-10份/100重量份含氟聚合物,较好是0.5-5份/100重量份含氟聚合物,以使含腈的含氟聚合物固化。
前述通式(II)或(IIA)的化合物宜与亚胺化物(imidates)混合,所述亚胺化物包括具有通式RaC(ORb)=NH的化合物,以及它们的盐,式中,Ra和Rb各自表示取代或未取代的C1-C20(较好是C1-C10,更好是C1-C7)烷基、芳基、芳烷基、链烯基、环烷基或环烯基。“取代的”是指被不影响所需产物的取代基所取代。适宜的取代基的例子包括卤素(例如氯、氟、溴、碘)、氰基、烷氧基和羧基。另外,一个或多个碳原子可被杂原子(如氧或氮)所取代。亚胺化物可按Zh.Obs.Khimii(第36卷(5),第862-71页(1966),CA6512206c)和J.Org.Chem.(第30卷,第3724页(1965))中所述来制备,上述文献在本文中引为参考。用于Ra和Rb的有用的基团的例子包括氟烷基、全氟烷基和全氟聚醚基团(例如US5,266,650中所描述的)。另外,在化合物中可包括一个以上的亚胺化物基团。有用的亚胺化物的例子包括例如CF3O(CF2)mOCF(CF3)C(NH)OCH3(式中,m为1-4的整数)和C3F7(O(CF3)CF2)nOCF(CF3)C(NH)OCH3(式中,n为0-3)。
可用来固化含腈的含氟聚合物的固化剂还包括以下通式的化合物{RdA}(-){QRck}(+)(III)式中,Rd表示具有1-20个碳原子的烷基或链烯基、具有3-20个碳原子的环烷基或环烯基、或者具有6-20个碳原子的芳基或烷芳基,Rd可以部分或全部氟化,和/或Rd可以被取代,例如该基团中的一个或多个氢原子被Cl、Br或I所取代。另外,Rd可包括一个或多个杂原子,如O、P、S或N。全氟化的基团Rd的例子包括具有通式CnF2n+1的全氟烷基(式中,n为1-20)、具有通式CmF2m-1的全氟环烷基(式中,m为3-20)、C6-C20全氟芳基和C2-C20全氟链烯基。
A是酸阴离子或酸衍生物阴离子,例如,A可以是COO、SO3、SO2、S、SO2NH、PO3、CH2OPO3、(CH2O)2PO2、C6H4O、OSO3、O(当Rd是芳基或烷芳基时)、 和 较好是COO、O、C6H4O、SO3、OSO3或 最好是COO、O、SO3和OSO3;R′可具有下述Rc的含义中的一种,或者可以是上述Rd所列的全氟化基团,R可具有下述Rc的含义中的一种,对R′的具体选择可以与Rd相同或不同,并且一个或多个A基团可以连接在Rd上。
Q是磷(P)、硫(S)、氮(N)、砷(As)或锑(Sb),k是Q的化合价。
各个Rc各自为氢或者取代或未取代的C1-C20烷基、芳基、芳烷基或链烯基。本文中使用的“取代的”是指被不影响所需产物的取代基所取代。适宜的取代基的例子包括卤素(例如Cl、F、Br、I)、氰基、ORe和COORe基团,式中,Re是选自氢或者碱金属或碱土金属(优选H、K、Na和NH4)、C1-C20烷基、芳基、芳烷基、链烯基、以及它们的氟化的或全氟化的类似物的基团。另外,任一对所述Re基团可以相互连接,并与Q原子连接形成杂环。
上述通式(III)中的阴离子RdA的例子包括C4F9SO3、C3F7COO、C7F15COO、C8F17SO3、C4F9SO2NSO2C4F9、CF3CF(CF3)CH2O和CnF2n+1CH2O(式中,n为2-100,较好是2-20,更好是2-10)。其它的阴离子包括具有以下通式的阴离子Rx-Phy-(-(CH2)n-D)m式中,Ph是苯基,各个Rx是相同或不相同的具有1-10个碳原子的烷基或链烯基,它们可以是取代的或未取代的,x为0-5,y为0或1,n为0-10,m为1-5,D选自COO、OSO3、SO3和O(当y为1时),条件是x与m之和为6或小于6。有用的阴离子的例子包括Ph-COO、Ph-O、CH3-(CH2)p-O-SO3(当p为1-10时)、以及通式为R-COO的羧酸根(式中,R为链烯基、含1-10个碳原子的烷基、例如乙酸根或丙酸根,或者具有6-20个碳原子的芳基)。多羧酸根、多硫酸根和多磺酸根也是有用的,例如,(-)OOC-(CH2)p-COO(-)或(-)OOC-(CF2)p-COO(-)(式中,p为0-10)、以及Ph-((CH2)p-COO(-))q(式中,p和q各自为1-4)。优选的一种二官能羧酸是草酸。另外,两种或多种上述化合物的混合物也可用于通式(III)中的RdA。
有代表性的芳族多氧化合物包括二、三和四氧苯、萘、蒽、以及具有以下通式的双酚(-)Oz-Ph-Gy-Ph-Oz(-)式中,G是一根键或者双官能的含1-13个碳原子的脂族、环脂族或芳族基团,或者硫代、氧基、羰基、亚磺酰基或磺酰基,G和/或Ph任选地被至少一个氯原子或氟原子取代,y为0或1,z为1或2,并且该多氧化合物的任一芳族环任选地被氯原子、氟原子或溴原子中的至少一个原子、或者羧基或酰基(例如,-COR,式中R为H或C1-C8烷基、芳基或环烷基)、或者烷基(例如具有1-8个碳原子的烷基)所取代。在上述双酚通式中,氧基可以连接在任一环中的任意位置(除了一位以外)。也可以使用两种或多种上述化合物的混合物。优选的一类物质包括双酚,如具有以下通式的那些(-)O-Ph-C(CX3)2-Ph-O(-),式中X为H、Cl或F(例如双酚AF)。当使用多官能酸时,可以使用单、双和多配合物。
如本领域中已知的,有机鎓是Lewis碱(例如膦、胺和硫化物)的共轭酸,可通过使所述Lewis碱与适宜的烷基化剂(例如烷基卤或酰基卤)反应,从而导致Lewis碱的给电子原子的化合价增大并使有机鎓化合物上产生正电荷来形成。优选的用于通式(III)化合物的有机鎓化合物含有至少一个杂原子,即非碳原子(如P、S、N)连接在有机基团上。
特别有用的一类季有机鎓化合物大致包括相对正离子和相对负离子,其中,磷、硫或氮通常构成所述正离子的中心原子,所述负离子是可部分氟化(即至少一个氢原子被氟取代)的烷基或环烷基酸阴离子,条件是保留至少一个非氟原子。
当Q是三价磷时,适宜的前体化合物的例子包括四甲基鏻、三丁基烯丙基鏻、三丁基苄基鏻、二丁基二苯基鏻、四丁基鏻、三丁基(2-甲氧基)丙基鏻、三苯基苄基鏻和四苯基鏻。这些鏻可以是氢氧化物、氯化物、溴化物、醇盐、酚盐等。优选四烷基鏻氢氧化物和四烷基鏻醇盐。
另一类鏻化合物包括选自氨基-鏻、正膦(例如,三芳基正膦)和含磷的亚铵(iminium)化合物的那些。可使用的氨基-鏻化合物包括在现有技术文献,例如美国专利No.4,259,463(Moggi等人)中所述的那些。
用于本发明的这类鏻化合物包括正膦化合物,如三芳基正膦化合物;一些三芳基正膦化合物是本领域中已知的并有说明的,例如参见美国专利No.3,752,787(de Brunner),该文献在此引为参考。
当Q是氮时,优选的正离子具有通式NRc4或HNRc3,式中Rc如上述。用作前体化合物的有代表性的季有机鎓包括苯基三甲基铵、四戊基铵、四丙基铵、四己基铵、四庚基铵、四甲基铵、四丁基铵、三丁基苄基铵、三丁基烯丙基铵、四苄基铵、四苯基铵、二苯基二乙基氨基铵、三苯基苄基铵、8-苄基-1,8-重氮二环[5.4.0]-7-十一碳烯鎓(undecenium)、苄基三(二甲基氨基)鏻和二(苄基二苯基膦)亚铵。这些铵可以是氢氧化物、氯化物、溴化物、醇盐、酚盐等。在这些正离子中,优选四丁基铵和四苯基铵。
当Q为As或Sb时,优选的正离子包括四苯基氯化鉮和四苯基氯化锑。总的来说,对通式(III)所示组分的正离子而言,更优选四烷基鏻化合物。还可以使用有机鎓化合物的混合物。
上述前体通常是市售的(例如,购自Aldrich Chemicals,Milwaukee,WI)或者可由现有技术中所述的方法制得。
用来制备通式(III)组分的烃的酸或盐通常具有以下通式RdCOOM、RdSO3M、RdOSO3M或RdOM。在这些通式中,Rd如上述具有通式(III),M是氢、碱金属或碱土金属。有代表性的物质是上述羧酸盐、硫酸盐、磺酸盐和酚盐。另外,也可以使用两种或多种上述通式(III)的化合物的混合物,包括两种或多种RdA基团和/或两种或多种QRck基团的混合物。
包含通式(III)的化合物的组合物可通过任何适宜的方法来制备。例如,通式(III)的活性配合物的两种组分可分别以酸或盐的形式加入,例如RdAX,式中X选自氢、碱金属或碱土金属,其中优选H、K、Na和NH4,和QRckZ,式中Z选自阴离子,可以是有机的或无机的,较好是Cl、Br、OH、OR3或SO4。上述两种组分可分别或者以混合物形式加入含氟弹性体胶中。在该方法中,所述活性配合物在加工、加热及固化过程中原位形成。为了避免污染及混入金属盐(这对诸如半导体的清洁用途尤其重要),所述配合物应在加到可固化的含氟弹性体组合物中之前制备,并且应在将所述活性配合物加入可固化的含氟弹性体组合物之前将所得的盐XZ过滤或洗涤。也可以使用本领域中已知的其它适宜的方法来制备通式(III)的化合物。例如,可在沉淀及滤出所得的盐XZ之前将通式(III)的催化剂组合物的两种组分溶解在适宜的溶剂(如醇)中。盐的形成可通过使作为鎓氢氧化物或鎓醇盐的鎓组分与所述催化剂组合物的酸组分反应(例如使Bu4NOH与RCOOH反应)来避免。当所述活性配合物溶解在溶剂中或者是干的化合物时,可将其加入所述可固化的含氟弹性体组合物中。过量的QRck物质(例如四烷基氯化鏻)或游离酸(例如RdAH)不会对聚合物的性能造成有害的影响。
通式(III)的化合物的用量可以是0.1-10份/100重量份含氟聚合物,较好是0.5-5份/100重量份含氟聚合物,以使所述含氟聚合物固化为具有所需物理和机械性能的含氟弹性体。
通式(III)的化合物宜与具有通式R2-OH的任选的醇结合使用,式中,R2是具有1-20个碳原子,更好是6-12个碳原子的烷基。R2可以是部分氟化的,例如Rf-CH2-OH或Rf-CH2CH2-OH,式中,Rf是全氟化烃基,如全氟化烷基。虽然不需要添加醇,但是添加醇有助于改变所述可固化的含氟弹性体组合物的粘度和固化特性。所述醇通常应选择与整个组合物相容。在研磨操作中,所述醇还应仍然在含氟聚合物与通式(III)的化合物的混合物中,然后在后固化操作过程中,在后续的加工中于更高的温度下蒸发。现有的优选的醇的例子包括辛醇和癸醇。在固化剂体系中使用有效量的醇。这一用量由若干因素来确定,包括醇与通式(III)化合物的所需比例、选用的具体醇、以及研磨温度。例如,低沸点醇所需的比例越高,并且研磨温度越高,将导致研磨过程中醇的用量越高。所选用的组合物的具体含量通常由常规实验确定。通常,这一用量为每100重量份含氟聚合物0.01-10重量份,更好是0.5-5重量份。
为了有效地固化含腈的含氟聚合物,还可使用其它化合物,包括氨基酚(US5,677,389)、氨盐(US5,565,512)、氨基喔星(amidoxine)(US5,668,221)、以及其它产生氨的化合物(PCT00/09603)或亚胺化物。
还可以使用一种或多种过氧化物固化剂使包括含腈的固化部位组分的含氟聚合物固化。适用于此目的的过氧化物固化剂包括上文列出的那些。本领域技术人员也会明白,所述可固化的含氟弹性体可包括固化部位组分的混合物,如含腈的固化部位和包含能参与过氧化物固化反应的卤素的固化部位的混合物。在后一种情况下,通常使用适于使腈组分与过氧化物固化的一种或多种化合物的混合物。
通常包括在基于有机过氧化物和/或含腈的固化部位组分的固化组合物中的另一种组分是由多不饱和的化合物组成的活性助剂,它能与过氧化物配合来提供有用的固化。这些活性助剂的添加量为每100份含氟聚合物0.1-10份,较好是每100份含氟聚合物2-5份。有用的活性助剂的例子包括氰脲酸三烯丙酯、异氰脲酸三烯丙酯、偏苯三酸三烯丙酯、异氰脲酸三(甲基烯丙基)酯、三(二烯丙基胺)-s-三嗪、亚磷酸三烯丙酯、N,N-二烯丙基丙烯酰胺、六烯丙基磷酰胺、N,N,N′,N′-四烷基对苯二酰胺(N,N,N′,N′-tetraalkyl tetraphthalamide)、N,N,N′,N′-四烯丙基丙二酰胺、异氰脲酸三乙烯基酯、2,4,6-三乙烯基甲基三硅氧烷、N,N′-间亚苯基二马来酰亚胺、邻苯二甲酸二烯丙酯和三(5-降冰片烯-2-亚甲基)氰脲酸酯。特别有用的是异氰脲酸三烯丙酯。其它有用的活性助剂包括公开在EPA 0661304A1、EPA 0784064A1和EPA 0769521A1中的二烯烃。
所述可固化的含氟弹性体组合物还可含有添加剂,如炭黑、稳定剂、增塑剂、润滑剂、填料,并且可将通常在含氟聚合物的配混中使用的加工助剂加入本发明的组合物中,只要它们具有用于所需应用条件的足够稳定性。较佳地,可加入有机填料,如含氟聚合物颗粒。例如,可加入由TFE和全氟乙烯基醚(如PPVE)共聚得到的全氟烷氧基共聚物(PFA),或者可加入由TFE和HFP共聚得到的氟化的乙烯/丙烯共聚物(FEP)。
所述可固化的含氟弹性体组合物可通过在常规的橡胶加工设备中混合含氟聚合物、固化组合物和其它添加剂来制备。所述设备包括橡胶磨、密闭式混合机(如班伯里混合机)和混合挤出机。
参考以下实施例对本发明作进一步说明,但这些实施例并非用来限制本发明。除非另外指出,所有份数均为重量份。
实施例除非另外指出,所示结果是用以下试验方法获得的。
固化流变性按照ASTM D 5289-93a使用型号2000的Monsanto活模流变仪(Moving Die Rheometer,MDR)对未固化的胶料样品进行测试,测试条件是177℃,不进行预热,持续时间30分钟,0.5度的弧度。测量最小扭矩(ML)和最高扭矩(MH),后者是在没有获得平坦线即最大扭矩时的指定的一段时间内获得的最高扭矩。还测量扭矩增至比ML高出2个单位的时间(″ts2″)、扭矩达到ML+0.5(MH-ML)的时间(″t′50″)以及扭矩达到ML+0.9(MH-ML)的时间(″t′90″)。
加压硫化除非另外指出,用于测量物理性能的样品片是通过在177℃以约6.9兆帕(MPa)压制30分钟制得的,尺寸为150×150×2.0mm。
后固化将经加压硫化的样品片在氮气气氛下使用以下6个阶段条件进行加热25-200℃ 6小时;200℃ 16小时;200-250℃ 2小时;250℃ 8小时;250-300℃ 2小时;300℃ 16小时。在测试之前使样品回复到室温。
制备全氟己二酸二(四丁基鏻)2升(L)的圆底烧瓶装有磁力搅拌器、温度传感器并与氮气鼓泡器连接。向烧瓶中加入188克(0.65摩尔)全氟己二酸(由3M公司的全氟己二酰二氟制备)和488克蒸馏水。边搅拌边加入898克(1.3摩尔)氢氧化四丁基铵(得自Aldrich)的40重量%水溶液,加料持续1小时。观察到稍有放热反应。于室温再搅拌混合物1小时。在15托(2KPa)的减压条件下将烧瓶加热至65℃以除去水,得到定量产率为523克(0.65摩尔)的(C4H9)4POCO(CF2)4COOP(C4H9)4。全氟己二酸二(四丁基鏻)的熔点为121-123℃,FNMR证实该结构和2∶1的摩尔比。
实施例1将40克CF2=CF-O-(CF2)5CN(NVE)和410克30%的全氟辛酸铵溶液(FX1006,3M)在轻轻搅拌下加热至50℃,所述全氟辛酸铵溶液含有占全氟辛酸铵重量的1.5重量%的含5-15个碳原子的全氟化烃类化合物的混合物(得自3M公司的FZ348)。混合物(pH=4)形成透明的微乳液,在室温下稳定。
此外,如下制备NVE在水中的水乳液用Ultra-turrax(IKA-Labortechnik)和微流化器(Microfluids M-110Y)在10克FX 1006(30%溶液)的存在下在水中乳化0.28千克NVE,得到平均粒度约为250nm。
向40升的釜中加入26升水、溶解在300毫升水中的60克全氟丁基亚磺酸钠(NaO2SC4F9),和制得的微乳液。然后,向脱氧的釜中加入400克TFE和1160克全氟甲基乙烯基醚(PMVE)。将釜加热至71℃(压力为10巴)之后,通过用30分钟向釜中加入溶解在水中(10%水溶液)的45克过硫酸铵(APS)来引发聚合反应。在6.25小时内,于10巴的恒定压力向该釜中持续加入6.1千克TFE、5.14千克PMVE和如上制得的NVE水乳液。所得胶乳的固含量为32%,粒度为70nm;凝结的聚合物的组成为65摩尔%TFE、34.2摩尔%PMVE和0.8摩尔%NVE,门尼粘度10+1,121℃=58。
实施例2按照实施例1所述,将35克CF2=CF-O-(CF2)5CN(NVE)和430克30%的全氟辛酸铵溶液(APFO,FX 1006,3M)转化成微乳液,所述全氟辛酸铵溶液含有占全氟辛酸铵重量的1.5重量%的含5-15个碳原子的全氟化烃类化合物的混合物(得自3M公司的FZ348)。在无氧条件下向釜中加入该微乳液、25升水、溶解在300毫升水中的60克全氟丁基亚磺酸钠和470克TFE、1360克PMVE。在73℃和12巴的条件下,通过加入45克APS来引发聚合反应。用5.0个小时连续加入6.0千克TFE、5.0千克PMVE和如实施例1所述的在1300克水中预乳化的0.45千克NVE。凝结的聚合物显示以下组成64.5摩尔%TFE、34.2摩尔%PMVE、1.3摩尔NVE;门尼粘度10+1,121℃=72。
比较例C1、C2重复实施例1和2,不同的是所有的NVE均以水乳液的形式(即如实施例1所述预乳化的形式)加入,而不是以微乳液的形式加入。
C1组成C2组成TFE66摩尔% TFE64.2摩尔%PMVE 33.2摩尔%PMVE 34.5摩尔%NVE0.8摩尔% NVE1.3摩尔%门尼粘度 50门尼粘度 78在双辊磨机上将所有的含腈聚合物与20phr N990(炭黑)、2phr AerosilR972(胶态二氧化硅)和1.5phr全氟己二酸二(四丁基鏻)配混;(实施例1显示以下固化流变性ML0.83英寸磅(in lb);MH 12.92英寸磅;ts2=4.79分钟;t507.14分钟;t′9013.2分钟)。
在索格利特装置中用热C6F6萃取经后固化的片过夜(20小时)。在冷却的C6F6中存在下述含量的提取物实施例13.1%可提取物实施例23.1%可提取物C1 8.5%可提取物C2 6.9%可提取物比较例C1的片材显示发亮潮湿的外观表面,比较例C2的片材也显示发亮潮湿的外观表面(但程度较低)。用实施例1或2的含氟聚合物制得的含氟弹性体不显示发亮潮湿的外观表面。
实施例3于室温轻轻搅拌40克NVE和390克高度纯化的全氟辛酸铵的30重量%溶液,直至得到澄清透明的微乳液。将该微乳液的pH值调整至4。用按实施例3所述制得的微乳液代替实施例1中的微乳液,重复实施例1所述的聚合反应。然后,按照以上实施例所述,对如此得到的含氟聚合物进行配混和固化。所得经固化的全氟聚合物不显示发亮潮湿的外观表面,其可提取物的量为3.3%(按照上述实施例中所述进行测量)。
权利要求
1.一种水性微乳液,它包括全氟化的链烷磺酸或链烷羧酸或者它们的盐、含固化部位的液态氟化单体以及任选的惰性、液态且高度氟化的烃类化合物。
2.如权利要求1所述的水性微乳液,其特征在于所述全氟化的链烷磺酸或链烷羧酸或者它们的盐对应于以下化学式(Y-Rf-Z)n-M (I)式中,Y表示Cl或F;Rf表示具有3-15个碳原子的直链或支链全氟化亚烷基;Z表示COO-或SO3-;M表示阳离子,包括单价和多价阳离子;n为M的化合价。
3.如权利要求1所述的水性微乳液,其特征在于所述液态氟化单体选自含一个或多个腈基的氟化乙烯基醚、含一个或多个腈基的氟化烯烃、含一个或多个选自氯、溴或碘的卤原子的氟化烯烃、含一个或多个选自氯、溴或碘的卤原子的氟化乙烯基醚,或者它们的混合物。
4.如权利要求1所述的水性微乳液,其特征在于所述液态氟化单体对应于以下化学式之一CF2=CF-CF2-O-Rf-CNCF2=CFO(CF2)lCNCF2=CFO[CF2CF(CF3)O]g(CF2)vOCF(CF3)CNCF2=CF[OCF2CF(CF3)]kO(CF2)uCN式中,l为2-12的整数;g为0-4的整数;k为1或2;v为0-6的整数;u为1-6的整数;Rf为全氟亚烷基或二价全氟醚基团。
5.如权利要求1所述的水性微乳液,其特征在于所述惰性、液态且高度氟化的烃类化合物包括全氟化烃类化合物。
6.一种制备权利要求1-5中任一项所述的水性微乳液的方法,该方法包括将水、全氟化的链烷磺酸或链烷羧酸或者它们的盐、可任选的惰性液态且高度氟化的烃类化合物以及含固化部位的液态氟化单体混合在一起。
7.一种制备能够固化成含氟弹性体的含氟聚合物的方法,该方法包括水乳液聚合一种或多种氟化单体和一种或多种含固化部位的液态氟化单体,其中至少在水乳液聚合反应过程的初始阶段以权利要求1-5中任一项所述的水性微乳液形式提供至少一部分所述液态氟化单体。
8.如权利要求7所述的方法,其特征在于在聚合反应的初始阶段提供至少2重量%的所述含固化部位的液态氟化单体,以含固化部位的液态氟化单体的总重量计。
9.如权利要求7所述的方法,其特征在于所述聚合反应是用选自以下的引发剂体系来引发的含氟脂族亚磺酸盐和能将所述亚磺酸盐氧化为磺酰基自由基的氧化剂的组合,或者自由基引发剂和水溶性氯化物盐的组合。
10.如权利要求9所述的方法,其特征在于所述含氟聚合物是全氟聚合物,选择所述引发剂体系及其用量使得所得全氟聚合物中离子端基具有这样的量,即该全氟聚合物的傅里叶变换红外光谱中1840cm-1-1620cm-1区域内积分峰强度与2740cm-1-2220cm-1区域内积分峰强度算得的吸光度比值小于0.1。
11.如权利要求7-10中任一项所述的方法,该方法还包括从所述聚合过程结束时获得的水分散体中分离含氟聚合物的步骤。
12.一种制备可固化的含氟弹性体组合物的方法,该方法包括以下步骤提供由权利要求11所述方法制得的含氟聚合物,将该含氟聚合物与一种固化组合物混合,所述固化组合物含有一种或多种能通过所述含氟聚合物所含的固化部位组分实现所述含氟聚合物固化的化合物。
13.如权利要求12所述的方法,其特征在于所述固化组合物还包含多不饱和的活性助剂。
14.一种制备含氟弹性体的方法,该方法包括以下步骤按照权利要求12或13所述方法提供一种可固化的含氟弹性体组合物,对如此获得的可固化的含氟弹性体组合物进行固化。
15.一种固化的含氟聚合物,它可由固化一种含氟聚合物而得到,所述含氟聚合物包含得自含固化部位的液态氟化单体的单元,用全氟苯索格利特萃取所述固化的含氟聚合物20小时,可提取的有机组分量小于所述固化的含氟聚合物重量的5重量%。
全文摘要
由全氟化的链烷磺酸或链烷羧酸或者它们的盐、含固化部位的液态氟化单体以及任选的惰性、液态且高度氟化的烃类化合物得到的水性微乳液。该水性微乳液可通过将水、全氟化的链烷磺酸或链烷羧酸或者它们的盐、可任选的惰性液态且高度氟化的烃类化合物以及含固化部位的液态氟化单体混合在一起来形成。
文档编号C08F214/18GK1671754SQ03818307
公开日2005年9月21日 申请日期2003年7月25日 优先权日2002年7月29日
发明者W·M·A·格罗托尔特, K·欣策, B·赫希, H·卡什帕尔, R·E·柯尔布, G·洛尔, W·施瓦特菲格 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1